

Mini Project: Semiconductor Etch Data PCA Analysis

Bhavesh Parkhe Nick Uvanovic

October 24th, 2019

Task 1 : Control Monitoring

- Unfolding
- Preprocessing
- Decomposition
- Calculating T-square and determining control limits

n = all, var = 32%, unfolded variables together

n = 5-75, var = 32%, unfolded variables together

n = 10-75, var = 32%, unfolded variables together

n = 80, var = 40%, unfolded average of each wafer

n = 70, var = 40%, unfolded average of each wafer

8

n = 60, var = 40%, unfolded average of each wafer

9

n = 20-90, var = 40%, unfolded average of each wafer

Task 2a: Error Analysis

- Use of T^2 for fault detection
- T² measure of the distance from the multivariate mean to the projection of the operating point onto the plane defined by the PCAs
- A T² fault indicates the process has outside the normal range of operation but in the direction of variation common in the process
- Calculated for Local & Global model

Task 2b: Performance measures

- Experimental calculation
- Cross-validation

Experimental calculation in classification of two classes

The confusion matrix is also called the contingency table.

		predicted			
		negative	positive		
actual examples	negative	C TN - True Negative correct rejections	<i>b</i> FP - False Positive false alarms type I error		
	positive	C FN - False Negative misses, type II error overlooked danger	d TP - True Positive hits		

R. Kohavi, F. Provost: Glossary of terms, Machine Learning, Vol. 30, No. 2/3, 1998, pp. 271-274.

Performance measures calculated from the confusion matrix entries:

- Accuracy = (a + d)/(a + b + c + d) = (TN + TP)/total
- True positive rate, recall, sensitivity = d/(c + d) = TP/actual positive
- Specificity, true negative rate = a/(a + b) = TN/actual negative
- Precision, predicted positive value = d/(b + d) = TP/predicted positive
- False positive rate, false alarm = b/(a + b)
 = FP/actual negative = 1 specificity
- False negative rate = c/(c + d) = FN/actual positive

Accuracy = 92.13%Error rate = 7.87%True positive rate = 84.25%True negative rate = 1000%False alarm = 0%Precision = 84.25%

K-Fold cross validation with K=5 Error rate = 28.57%

As predicted, experimental techniques are over optimistic about the accuracy of the process and is not a correct gauge for the health of process

Task 3 : Analysis of PCA results

- Comparison with the techniques in the paper
- Comparison of results
- Scope for improvement of PCA model
- Comparison with other algorithms

		TLD	PARAFAC	MPCA	PCA/mean
Global	Machine	11	12	10	10
	RFM	7	6	11	9
	OES	9	6	6	5
Local	Machine	14	17	11	16
	RFM	12	14	14	12
	OES	12	11	6	13
Mean		10.8	11.0	9.7	10.8

Table 5. Faults detected for each combination of sensor, method and timescale

Conclusions

- MPCA method gave almost similar fault detection characteristics for our global model
- Global models fared better than local for each of the observations given the computational complexity involved
- RFM data would help in getting accurate sections of the data
- Controlling false negative rate, we can get higher fault detection using MPCA while compromising with the manufacturer's loss
- PARAFAC and TLD are better means for getting a better estimation from global fault data

