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Abstract - Accurate tool condition monitoring 

methods are imperative for modern 

manufacturing, including drilling processes. In 

this study, five different classification methods 

are used to detect faults and classify common 

modes of drill bit wear. The methods studied in 

this work are k-nearest neighbor, decision tree, 

artificial neural network, support vector 

machine, and Naive Bayes classifier. The 

detection and classification models are applied 

to data from the penetration drilling condition, 

as well as the steady-state condition. The 

models are also evaluated for their ability to 

detect specific types of drill bit wear. 
 

I. INTRODUCTION 

 
In contemporary manufacturing, an increasing 

number of processes are becoming automated, 

including drilling. Because the effectiveness of a 

drill bit diminishes as it becomes worn, it is 

critical to monitor the condition of drill bits 

throughout their lifetime and replace worn bits 

once their performance decreases to a level 

warranting replacement. To realize viable tool 

condition monitoring methods, vibration sensors 

have been utilized to collect vibration data from 

functioning drill bits. Different types of drill bit 

wear result in different dynamic responses and 

vibration signatures, making vibration data an 

effective method for analyzing drilling [10]. 

Vibration analysis is especially advantageous for 

monitoring tool condition because it is 

noninvasive and enables continuous monitoring 

without interrupting the manufacturing process 

[1]. 
 
In the present work, vibration data was analyzed 

by five different classification models to detect 

drill bit wear and to determine which specific type 

of wear was affecting the drill bit. The following 

five classification models were used: k-nearest 

neighbor (kNN), decision tree, artificial neural 

network (ANN), support vector machine (SVM), 

and Naive Bayes classifier. The models 

exclusively used vibration data for tool condition 

monitoring [1]. The performance of these five 

models was compared for fault detection, fault 

classification, and detection of individual wear 

types. Three different types of wear that 

commonly result in drill bit failure were studied: 

flank wear, chisel wear, and outer corner wear [1].  
 

II. EXPERIMENTAL SETUP 

 
The dataset used for this work was sourced from 

the drill data repository from the experiments in 

[10]. The data was derived from a 3-axis CNC 

EMCO Concept Mill 105 which performed 

drilling experiments on a mild-steel work-piece 

with 9mm HSS twist drills [10]. Specifications for 

the uniaxial accelerometer and data acquisition 

card used to acquire and digitize the vibration 

signals are listed in Table 1 [10]. 15 different 

drilling conditions were tested, with each 

condition consisting of a unique combination of 

the drill feed rates and cutting speeds listed in 

Table 1.  

 

 
The set of 15 tests was performed for a drill bit in 

perfect condition as well as for drill bits in each of 

the three artificially-induced wear conditions: 

Table 1 

Parameters used in experimental procedure 

Uniaxial 

accelerometer 

Model: PCB Piezotronics 603C01 

Measurement range: ± 50 g 

Sensitivity: 100 mV/g 

Frequency range: 0.5 to 10k Hz 

Data acquisition 

card 

Type: National Instruments DAQ 

Chassis model: NI cDAQ 9172 

Drill feed rates 4, 8, and 12 mm/min 

Drill cutting 

speeds 

160, 170, 180, 190, and 200 rpm 



flank wear, chisel wear, and outer corner wear 

[10]. A single test spanned a time period of eight 

seconds and collected data at a rate of 32,768 

samples per second [10]. Data was collected for 

two different feeding conditions: steady-state, in 

which the drill bit does not travel vertically, and 

penetration, in which the drill contacts and passes 

through the work-piece in the vertical direction 

[10]. 

 

III. DATA PREPROCESSING 

 
The raw data was separated into steady-state and 

penetration experimental data sets in order to 

perform the fault detection and classification 

analyses separately for each condition. The 

separation yielded two datasets of 60 experiments 

each. Pre-processing of the experimental data was 

necessary in order to remove the significant noise 

present in the vibration sensor data [10]. 
 
A. Digital filtering 
The noise is digitally filtered from the data with a 

low-pass Butterworth filter of order 20 and cutoff 

frequency of 12kHz. Filtering the data gives 

similar results when compared to the method of 

cutting off frequencies above a certain range for 

FFT analysis. However it is a good practice to 

filter data since it influences the time domain 

features accordingly. 
 
B. Feature extraction 
A set of 21 features were extracted from the pre-

processed data. The set consisted of eight time-

domain features, eight frequency-domain features, 

and five Morlet wavelet features [10]. The time-

domain features consisted of mean, maximum 

peak, root mean square, variance, kurtosis, crest 

factor, shape factor, and skewness. Frequency 

domain features were derived from a spectral 

analysis of the vibration data from each 

experiment. The vibration frequency response was 

divided into eight equal bins and for each bin, a 

feature was calculated by finding the ratio of 

spectral energy contained in that bin to the total 

spectral energy across all eight bins [10]. The 

Morlet wavelets were calculated using the 

parameters specified in [10]. The features derived 

from the convolution of the wave and signal were 

its standard deviation, wavelet entropy, kurtosis, 

skewness and variance. 
 
C. Feature selection 
In order to use the features for fault detection it is 

necessary to make sure there is a correlation 

between the faults and the features. Features which 

have low correlation would consume additional 

data for little value addition and may influence the 

output negatively in worse cases. A correlation 

cutoff of 30% was set and the resulting features 

were sent for further processing. 
 
The features were further processed using 

principal component analysis (PCA). The purpose 

of applying PCA is to reduce the dimensionality of 

the features and have fewer variables for analysis. 

For a comparative analysis, PCA was performed 

on both the reduced correlated features and the 

original set of 21 features. Using eigenvalue 

decomposition, the features with highest 

correlation between them were combined. 
 
For the fault-correlated features, the number of 

final features available varied depending on the 

fault-types selected. Using a leave-one-out 

approach, the correlated features were calculated 

for all sets of faults and the results were combined 

to give a set of all features with correlation of 

more than 30% with the faults in either case. 
 
The number of principal components that would 

be input into the subsequent detection and 

classification models varied between 1 and the 

maximum number of available principal 

components in order to determine the effect of 

retaining different quantities of principal 

components on the final classification accuracy 

[10]. 
 

IV. CLASSIFIER MODELLING 

 
kNN is a nonlinear classification method in which 

a new object is classified based upon its distance 

to the nearest training samples of known 

classification. The new object is assigned to the 

class that accounts for the majority of the “k” 

nearest training samples. kNN is a simple method 

whose strength is its ability to classify nonlinear, 

multimodal, unlabeled samples based upon their 



similarity to training samples [7]. It is widely used 

in industry for fault classification [7]. To design a 

kNN classifier, it is necessary to specify the 

number of nearest neighbors (k) used to classify a 

new sample, the measurement method used to 

determine the distance between sample data 

points, and the voting scheme used to determine 

the new sample’s classification. The variable k 

acts as a smoothing parameter. Low values of k 

can result in a noisy model, while high values can 

yield a model that is excessively smooth. k-values 

of three, five, and seven were tested, and optimal 

performance resulted from a k value of three. The 

Euclidean distance metric was used to determine 

the distance between data points. For voting 

scheme, it was found that “squared-inverse”, a 

type of weighted-sum voting, yielded high 

detection and classification accuracies. Instead of 

voting based on majority, weighted-sum voting 

gives near-neighbors greater influence on the 

classification than distant neighbors [7]. For 

squared-inverse, the weight is the reciprocal of the 

squared distances [7]. 
 
A decision tree is a type of classification model 

based upon if/then rules that consists of a network 

of binary branches originating from an initial root 

node. Links between branches represent decision 

points that successively work to classify the new 

input data point. The final layer of branches on the 

decision tree leads to endpoints called “leaves” 

that represent classification labels. The decision 

tree in this work followed the standard CART split 

predictor selection technique. The CART 

algorithm often generates deep decision trees that 

overfit the data [9]. Deep trees can achieve high 

accuracy on the training data, but are prone to poor 

performance when classifying a novel test set [9]. 

When classifying new tests sets, simple, shallow, 

generalized decision trees are often more robust 

than deep trees [9]. In order to prevent overfitting, 

the maximum number of splits for each decision 

tree was limited to five. 
 
An artificial neural network is a classification 

method based upon the human brain that receives 

input data and implements weight, biases, and 

transfer functions to deliver an output. During 

training, the weights and biases are adjusted so 

that the ANN’s output matches the target values 

[5]. ANN is an effective tool for recognizing 

patterns in noisy, complex data and determining 

their nonlinear relationships [1]. An ANN consists 

of at least one hidden layer followed by an output 

layer. The output layer consists of as many 

neurons as the system has outputs. In this work, 

the detection ANN included two neurons in the 

output layer because there were two possible 

outputs, whereas the classification ANN included 

three, corresponding to the three wear types that 

constituted the output. Multilayer networks are 

more powerful than single layer networks, but it is 

rare for practical neural networks to have more 

than three layers [5]. In this work, tests were 

performed with ANNs of varying numbers of 

layers and neurons. A three-layer feedforward 

network, comprised of two hidden layers and one 

Table 2 

Specifications for classifier design 

k-nearest neighbor (kNN) 

Number of nearest neighbors: 

Distance measurement metric: 

Equal or weighted voting: 

Distance weight: 

3 

Euclidean 

Weighted 

Squared-inverse 

Decision tree 

Maximum number of splits: 

Split predictor technique: 

5 

CART 

Artificial neural network (ANN) 

Neural network type: 

Number of layers: 

Number of hidden layers: 

Neurons per hidden layer: 

Transfer function (hidden layers): 

Transfer function (output layer): 

Training method: 

Performance metric: 

Feedforward 

3 

2 

20 

Tangent-sigmoid 

Pure-linear 

Levenberg-Marquardt 

Mean-squared error 

Support vector machine (SVM) 

Kernel Function 

Box Constraint 

Coding Matrix 

Standardization 

Linear 

0.1 

Onevsone & onevsall  

False 

Naive-Bayes 

Distribution name 

Width 

Kernel 

Kernel 

9 

Normal 



output layer, with 20 neurons per hidden layer, 

was found to achieve a good balance between 

classification accuracy and computing time. The 

trained ANN was generated using Matlab’s Deep 

Learning Toolbox™. In a feedforward ANN, data 

is input into the first layer and subsequently 

processed by the following layers until an output is 

provided by the output layer [4]. A recurrent ANN 

was not chosen because the input data was not 

time-dependent [5]. In addition to the number of 

layers and neurons, a transfer function must be 

specified for each layer. Transfer functions 

determine the output of each individual layer. Tan-

sigmoid transfer functions were used for the 

hidden layers and a linear transfer function was 

used for the output layer. 
 
SVM is a binary classification technique which is 

used to establish boundaries between classes based 

on maximum margin from the closest points in 

two distinct classes. Multiclass application of 

SVM consists of training N binary SVM models 

and combining them together. MATLAB offers an 

error correcting output codes (ECOC) toolbox for 

multi-class SVM which trains a model based on 

multiple binary solvers. For the binary solvers, a 

positive and negative class should be defined. The 

coding matrix defines the positive or negative 

classes for the solvers in each column. One-vs-one 

and one-vs-all approaches are more suitable for 

our application since we do not have an unequal 

preference for a fault occurring in the drill. 

Standardizing the input affects the classification 

negatively since they have been standardized 

during the PCA scores calculation. The parameters 

for optimization were calculated using hyper 

parameters optimization with grid search. 
 
Naive Bayes classifier is a probabilistic model 

which ignores correlation between individual input 

features while assigning probabilities for each 

class label. It is based on the Bayes Rule of 

probability where calculating the probability of an 

event given certain predictor value can be 

estimated using individual probability of the 

events and the probability of the predictor given a 

particular class. In this paper, data is kernel 

smoothing with a window width of 9 has been 

used based on grid search. A Gaussian kernel has 

been used to specify distribution for kernel 

smoothing. 

 
V. TRAINING AND TESTING 

 
Following PCA of the feature selection data, the 

set of reduced features was used to train and test 

the five detection and classification model types: 

kNN, decision tree, ANN, SVM, and Naive Bayes. 

Several practices are recommended in [6]. The 

usual practice of testing the model using cross 

validation within the training data gives a training 

error. For testing error, the samples must be 

physically separated from the training data set and 

labels must be compared after predicting the labels 

for the test samples using the trained model. 

Applying this methodology over the entire domain 

and averaging the errors yields the test error. 

Standard deviation of this error is also helpful in 

determining the effectiveness of the model.  
 
In this work, the given classified data was used for 

both purposes by being separated into testing sets 

and training sets. The training data of known 

classification was used to train each classifier for 

fault detection, fault classification, and detection 

of specific fault types for both penetration data and 

steady-state data. 
 
Following training, the testing data set, consisting 

of samples that were not included among the 

training data, was used to determine the accuracy 

of each classifier. Accuracy was determined by 

comparing the output of the classifier to the known 

correct output and dividing the quantity of correct 

classifications by the total number of test samples. 

The results from each fold’s test set were 

combined and used to determine an overall 

accuracy for the classifier. For detection 

classifiers, the two possible outputs consisted of 

“faulty” and “non-faulty”. Thus, the detection 

classifiers functioned as binary classifiers. For the 

fault classification classifiers, there were three 

possible outputs representing the wear types: 

“flank”, “chisel”, and “outer corner”. The models 

were also trained for an alternate classification 

method in which a specific type of wear served as 

the detection target. In that case, the known 

classifications consisted of two classes, for 

instance, flank-wear and non-flank-wear. The 

process described here was applied separately to 

the penetration data and the steady-state data in 



order to train and test detection and classification 

models for both conditions independently. 
 

VI. RESULTS AND DISCUSSION 

 
By plotting detection and classification accuracies 

against the number of principal components 

retained, it is possible to observe stabilizing levels 

of accuracy as the number of retained principal 

components increases. The results from 

penetration and steady-state data are given as 

follows. 
 
A. Penetration stage data 
As seen in the penetration stage data in Figures 1 

and 3, the kNN classifier achieved a stable 

accuracy of 77% for fault detection and 73% for 

classification. The decision tree produced similar 

results for fault detection, reaching a stable 

accuracy of 75%. However, it performed worse for 

classification, reaching approximately 50% 

accuracy. Results for the ANN classifier were less 

consistent. For detection, typical accuracies fell 

between 70% and 83%. For classification, typical 

accuracies ranged from 51% to 73%. SVM and 

Naive Bayes achieved 75% and 65% detection 

accuracies, respectively, while for classification, 

they reached 87% and 71% accuracy, respectively.  

 
The classifiers detected flank wear with accuracies 

between 62% and 82%. The accuracy of the kNN 

classifier stabilized between 80% and 82% while 

the decision tree consistently reached accuracies 

between 62% and 71%. The ANN’s classification 

accuracies were less consistent, falling between 

63% and 78%. SVM and Naive Bayes detected 

flank wear with 82% and 76% accuracy, 

respectively. 
 
Accuracies of chisel wear detection between 60% 

and 93% were achieved by the penetration data 

classifiers. The accuracy of kNN stabilized 

Figure 2: Fault detection accuracy based on steady-state data 
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Figure 1: Fault detection accuracy based on penetration data 



between 80% and 82% and that of the decision 

tree stabilized between 64% and 67%. Accuracy of 

the ANN classifier spanned a wider range, from 

55% to 77%. SVM and Naive Bayes detected 

chisel wear with 91% and 93% accuracy, 

respectively. 
 
The classifiers were able to detect outer corner 

wear with accuracies ranging from 60% to 96%. 

Stable accuracies of 91% and 71% were reached 

by kNN and decision tree respectively. The 

accuracy of ANN varied from as low as 60% to as 

high as 83%. SVM and Naive Bayes detected 

outer corner wear with 96% and 71% accuracy, 

respectively. 
 
B. Steady-state stage data 
As seen in the steady-state stage data in Figures 2 

and 4, kNN reached a stable detection accuracy of 

78% and a stable classification accuracy of 84%. 

The decision tree classifier demonstrated 

inconsistent detection performance, with 

accuracies ranging from 52% to 75%. It reached a 

stable classification accuracy of 53%. The 

detection accuracies of the ANN classifier fell 

between 55% and 82% while its classification 

accuracies ranged from 62% to 84%. SVM and 

Naive Bayes reached detection accuracies of 80% 

and 75%, respectively, and classification 

accuracies of 93% and 73%, respectively. 
 
For detecting flank wear, accuracies between 75% 

and 93% were reached. kNN achieved a stable 

accuracy of 93%, while the decision tree classifier 

reached a stable accuracy of 76%. ANN returned 

relatively stable accuracies of 81% to 90% 

accuracy. SVM and Naive Bayes detected flank 

wear with 87% and 80% accuracy, respectively. 
 
Chisel wear was detected with accuracies ranging 

from 60% to 91%. kNN reached a stable accuracy 

of 87%. Decision tree reached a stable accuracy of 

Figure 3: Fault classification accuracy based on penetration data 
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Figure 4: Fault classification accuracy based on steady-state data 
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73% and the accuracy of ANN fell between 60% 

and 82%. SVM and Naive Bayes detected chisel 

wear with 91% and 73% accuracy, respectively. 
 
Detection of outer corner wear reached accuracies 

between 62% and 100%. The output accuracy of 

kNN stabilized at 93%. The accuracies of decision 

tree fell between 62% and 67%. Those of ANN 

ranged from 65% to 85%. SVM and Naive Bayes 

detected outer corner wear with 100% and 80% 

accuracy, respectively. 
 
Detection accuracies were generally higher than 

classification accuracies, which was expected 

since the models functioned as binary classifiers 

for detection and multi-class classifiers for 

classification.  
 
Detection accuracy was generally higher for 

penetration data than for steady-state data. 

However, the classifiers exhibited higher 

classification accuracy based off of steady-state 

data than for penetration data. The greater noise 

present in the raw penetration data may have 

obfuscated the data enough to reduce classification 

accuracy. By reducing noise further by optimizing 

the data preprocessing, it may be possible to 

achieve higher classification accuracy. 
 

It is evident from the results that SVM and kNN 

generally achieved the highest accuracies. Both 

classifiers achieved high, stable accuracies for 

fault detection, fault classification, and individual 

detection of flank wear, chisel wear, and outer 

corner wear. The strong performance aligns with 

kNN’s strength in classifying nonlinear, 

multimodal data. 
 

Possible explanations for the poor performance of 

the decision tree are excessive sensitivity to 

changes in the training data, and the fact that each 

leaf of the decision tree represents a singular, 

constant output, thereby resulting in 

discontinuities among leaves [2]. 

 

The poor performance of the ANN is most likely 

due to overfitting. The trained ANN was able to 

classify training data without error, but could not 

do so for testing data. A means to prevent 

overfitting is to provide more training samples. 

Doubling the number of training samples could be 

accomplished by splitting each sample of 8-second 

duration into two samples of 4-seconds each. 

 

It is evident from Figures 5 and 6 that the method 

of training classifiers with a reduced set of highly 

fault-correlated features, as described in section 

III-C, increases the classification accuracy at low 
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numbers of retained features for kNN and SVM 

classifiers. Similar improvement was observed 

when the reduced sets were used to detect specific 

wear types. 

 
VII. CONCLUSIONS 

 
With varying degrees of success, five 

classification methods were used to detect and 

classify faults from vibrational drilling data. SVM 

and kNN classifiers performed with the highest 

accuracy and are thus recommended for 

application in drill bit fault monitoring systems. 

SVM and kNN were able to achieve stable 

detection accuracies of 75% and 78%, 

respectively, and stable classification accuracies of 

93% and 84%, respectively. The other classifiers 

tested, decision tree, ANN, and Bayes classifier, 

did not reach the same levels of accuracy. 
 
Results from this work demonstrate that classifiers 

are generally able to classify faults more 

accurately based on steady-state data than 

penetration data. Likewise, the classifers’ 

detection of individual wear types was generally 

more accurate when based on steady-state data. 
 
Further work could be performed to integrate the 

aforementioned five classifiers into ensemble 

classification methods, whereby considering the 

output of multiple classifiers could yield even 

higher detection and classification accuracies. 

Additionally, improved ANN performance could 

be attained by re-training the classifier with a 

greater number of training samples.  

 

Promising results were obtained by using a 

reduced set of highly correlated features to train 

kNN and SVM classifiers. Further work would 

also involve expanding this approach to the other 

classification methods.   
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