
Drill bit fault detection and classification using k-nearest neighbor, decision tree,

artificial neural network, support vector machine, and Naive Bayes classifier

Bhavesh Parkhe and Nino Figliola

University of Massachusetts Amherst

Abstract - Accurate tool condition monitoring

methods are imperative for modern

manufacturing, including drilling processes. In

this study, five different classification methods

are used to detect faults and classify common

modes of drill bit wear. The methods studied in

this work are k-nearest neighbor, decision tree,

artificial neural network, support vector

machine, and Naive Bayes classifier. The

detection and classification models are applied

to data from the penetration drilling condition,

as well as the steady-state condition. The

models are also evaluated for their ability to

detect specific types of drill bit wear.

I. INTRODUCTION

In contemporary manufacturing, an increasing

number of processes are becoming automated,

including drilling. Because the effectiveness of a

drill bit diminishes as it becomes worn, it is

critical to monitor the condition of drill bits

throughout their lifetime and replace worn bits

once their performance decreases to a level

warranting replacement. To realize viable tool

condition monitoring methods, vibration sensors

have been utilized to collect vibration data from

functioning drill bits. Different types of drill bit

wear result in different dynamic responses and

vibration signatures, making vibration data an

effective method for analyzing drilling [10].

Vibration analysis is especially advantageous for

monitoring tool condition because it is

noninvasive and enables continuous monitoring

without interrupting the manufacturing process

[1].

In the present work, vibration data was analyzed

by five different classification models to detect

drill bit wear and to determine which specific type

of wear was affecting the drill bit. The following

five classification models were used: k-nearest

neighbor (kNN), decision tree, artificial neural

network (ANN), support vector machine (SVM),

and Naive Bayes classifier. The models

exclusively used vibration data for tool condition

monitoring [1]. The performance of these five

models was compared for fault detection, fault

classification, and detection of individual wear

types. Three different types of wear that

commonly result in drill bit failure were studied:

flank wear, chisel wear, and outer corner wear [1].

II. EXPERIMENTAL SETUP

The dataset used for this work was sourced from

the drill data repository from the experiments in

[10]. The data was derived from a 3-axis CNC

EMCO Concept Mill 105 which performed

drilling experiments on a mild-steel work-piece

with 9mm HSS twist drills [10]. Specifications for

the uniaxial accelerometer and data acquisition

card used to acquire and digitize the vibration

signals are listed in Table 1 [10]. 15 different

drilling conditions were tested, with each

condition consisting of a unique combination of

the drill feed rates and cutting speeds listed in

Table 1.

The set of 15 tests was performed for a drill bit in

perfect condition as well as for drill bits in each of

the three artificially-induced wear conditions:

Table 1

Parameters used in experimental procedure

Uniaxial

accelerometer

Model: PCB Piezotronics 603C01

Measurement range: ± 50 g

Sensitivity: 100 mV/g

Frequency range: 0.5 to 10k Hz

Data acquisition

card

Type: National Instruments DAQ

Chassis model: NI cDAQ 9172

Drill feed rates 4, 8, and 12 mm/min

Drill cutting

speeds

160, 170, 180, 190, and 200 rpm

flank wear, chisel wear, and outer corner wear

[10]. A single test spanned a time period of eight

seconds and collected data at a rate of 32,768

samples per second [10]. Data was collected for

two different feeding conditions: steady-state, in

which the drill bit does not travel vertically, and

penetration, in which the drill contacts and passes

through the work-piece in the vertical direction

[10].

III. DATA PREPROCESSING

The raw data was separated into steady-state and

penetration experimental data sets in order to

perform the fault detection and classification

analyses separately for each condition. The

separation yielded two datasets of 60 experiments

each. Pre-processing of the experimental data was

necessary in order to remove the significant noise

present in the vibration sensor data [10].

A. Digital filtering
The noise is digitally filtered from the data with a

low-pass Butterworth filter of order 20 and cutoff

frequency of 12kHz. Filtering the data gives

similar results when compared to the method of

cutting off frequencies above a certain range for

FFT analysis. However it is a good practice to

filter data since it influences the time domain

features accordingly.

B. Feature extraction
A set of 21 features were extracted from the pre-

processed data. The set consisted of eight time-

domain features, eight frequency-domain features,

and five Morlet wavelet features [10]. The time-

domain features consisted of mean, maximum

peak, root mean square, variance, kurtosis, crest

factor, shape factor, and skewness. Frequency

domain features were derived from a spectral

analysis of the vibration data from each

experiment. The vibration frequency response was

divided into eight equal bins and for each bin, a

feature was calculated by finding the ratio of

spectral energy contained in that bin to the total

spectral energy across all eight bins [10]. The

Morlet wavelets were calculated using the

parameters specified in [10]. The features derived

from the convolution of the wave and signal were

its standard deviation, wavelet entropy, kurtosis,

skewness and variance.

C. Feature selection
In order to use the features for fault detection it is

necessary to make sure there is a correlation

between the faults and the features. Features which

have low correlation would consume additional

data for little value addition and may influence the

output negatively in worse cases. A correlation

cutoff of 30% was set and the resulting features

were sent for further processing.

The features were further processed using

principal component analysis (PCA). The purpose

of applying PCA is to reduce the dimensionality of

the features and have fewer variables for analysis.

For a comparative analysis, PCA was performed

on both the reduced correlated features and the

original set of 21 features. Using eigenvalue

decomposition, the features with highest

correlation between them were combined.

For the fault-correlated features, the number of

final features available varied depending on the

fault-types selected. Using a leave-one-out

approach, the correlated features were calculated

for all sets of faults and the results were combined

to give a set of all features with correlation of

more than 30% with the faults in either case.

The number of principal components that would

be input into the subsequent detection and

classification models varied between 1 and the

maximum number of available principal

components in order to determine the effect of

retaining different quantities of principal

components on the final classification accuracy

[10].

IV. CLASSIFIER MODELLING

kNN is a nonlinear classification method in which

a new object is classified based upon its distance

to the nearest training samples of known

classification. The new object is assigned to the

class that accounts for the majority of the “k”

nearest training samples. kNN is a simple method

whose strength is its ability to classify nonlinear,

multimodal, unlabeled samples based upon their

similarity to training samples [7]. It is widely used

in industry for fault classification [7]. To design a

kNN classifier, it is necessary to specify the

number of nearest neighbors (k) used to classify a

new sample, the measurement method used to

determine the distance between sample data

points, and the voting scheme used to determine

the new sample’s classification. The variable k

acts as a smoothing parameter. Low values of k

can result in a noisy model, while high values can

yield a model that is excessively smooth. k-values

of three, five, and seven were tested, and optimal

performance resulted from a k value of three. The

Euclidean distance metric was used to determine

the distance between data points. For voting

scheme, it was found that “squared-inverse”, a

type of weighted-sum voting, yielded high

detection and classification accuracies. Instead of

voting based on majority, weighted-sum voting

gives near-neighbors greater influence on the

classification than distant neighbors [7]. For

squared-inverse, the weight is the reciprocal of the

squared distances [7].

A decision tree is a type of classification model

based upon if/then rules that consists of a network

of binary branches originating from an initial root

node. Links between branches represent decision

points that successively work to classify the new

input data point. The final layer of branches on the

decision tree leads to endpoints called “leaves”

that represent classification labels. The decision

tree in this work followed the standard CART split

predictor selection technique. The CART

algorithm often generates deep decision trees that

overfit the data [9]. Deep trees can achieve high

accuracy on the training data, but are prone to poor

performance when classifying a novel test set [9].

When classifying new tests sets, simple, shallow,

generalized decision trees are often more robust

than deep trees [9]. In order to prevent overfitting,

the maximum number of splits for each decision

tree was limited to five.

An artificial neural network is a classification

method based upon the human brain that receives

input data and implements weight, biases, and

transfer functions to deliver an output. During

training, the weights and biases are adjusted so

that the ANN’s output matches the target values

[5]. ANN is an effective tool for recognizing

patterns in noisy, complex data and determining

their nonlinear relationships [1]. An ANN consists

of at least one hidden layer followed by an output

layer. The output layer consists of as many

neurons as the system has outputs. In this work,

the detection ANN included two neurons in the

output layer because there were two possible

outputs, whereas the classification ANN included

three, corresponding to the three wear types that

constituted the output. Multilayer networks are

more powerful than single layer networks, but it is

rare for practical neural networks to have more

than three layers [5]. In this work, tests were

performed with ANNs of varying numbers of

layers and neurons. A three-layer feedforward

network, comprised of two hidden layers and one

Table 2

Specifications for classifier design

k-nearest neighbor (kNN)

Number of nearest neighbors:

Distance measurement metric:

Equal or weighted voting:

Distance weight:

3

Euclidean

Weighted

Squared-inverse

Decision tree

Maximum number of splits:

Split predictor technique:

5

CART

Artificial neural network (ANN)

Neural network type:

Number of layers:

Number of hidden layers:

Neurons per hidden layer:

Transfer function (hidden layers):

Transfer function (output layer):

Training method:

Performance metric:

Feedforward

3

2

20

Tangent-sigmoid

Pure-linear

Levenberg-Marquardt

Mean-squared error

Support vector machine (SVM)

Kernel Function

Box Constraint

Coding Matrix

Standardization

Linear

0.1

Onevsone & onevsall

False

Naive-Bayes

Distribution name

Width

Kernel

Kernel

9

Normal

output layer, with 20 neurons per hidden layer,

was found to achieve a good balance between

classification accuracy and computing time. The

trained ANN was generated using Matlab’s Deep

Learning Toolbox™. In a feedforward ANN, data

is input into the first layer and subsequently

processed by the following layers until an output is

provided by the output layer [4]. A recurrent ANN

was not chosen because the input data was not

time-dependent [5]. In addition to the number of

layers and neurons, a transfer function must be

specified for each layer. Transfer functions

determine the output of each individual layer. Tan-

sigmoid transfer functions were used for the

hidden layers and a linear transfer function was

used for the output layer.

SVM is a binary classification technique which is

used to establish boundaries between classes based

on maximum margin from the closest points in

two distinct classes. Multiclass application of

SVM consists of training N binary SVM models

and combining them together. MATLAB offers an

error correcting output codes (ECOC) toolbox for

multi-class SVM which trains a model based on

multiple binary solvers. For the binary solvers, a

positive and negative class should be defined. The

coding matrix defines the positive or negative

classes for the solvers in each column. One-vs-one

and one-vs-all approaches are more suitable for

our application since we do not have an unequal

preference for a fault occurring in the drill.

Standardizing the input affects the classification

negatively since they have been standardized

during the PCA scores calculation. The parameters

for optimization were calculated using hyper

parameters optimization with grid search.

Naive Bayes classifier is a probabilistic model

which ignores correlation between individual input

features while assigning probabilities for each

class label. It is based on the Bayes Rule of

probability where calculating the probability of an

event given certain predictor value can be

estimated using individual probability of the

events and the probability of the predictor given a

particular class. In this paper, data is kernel

smoothing with a window width of 9 has been

used based on grid search. A Gaussian kernel has

been used to specify distribution for kernel

smoothing.

V. TRAINING AND TESTING

Following PCA of the feature selection data, the

set of reduced features was used to train and test

the five detection and classification model types:

kNN, decision tree, ANN, SVM, and Naive Bayes.

Several practices are recommended in [6]. The

usual practice of testing the model using cross

validation within the training data gives a training

error. For testing error, the samples must be

physically separated from the training data set and

labels must be compared after predicting the labels

for the test samples using the trained model.

Applying this methodology over the entire domain

and averaging the errors yields the test error.

Standard deviation of this error is also helpful in

determining the effectiveness of the model.

In this work, the given classified data was used for

both purposes by being separated into testing sets

and training sets. The training data of known

classification was used to train each classifier for

fault detection, fault classification, and detection

of specific fault types for both penetration data and

steady-state data.

Following training, the testing data set, consisting

of samples that were not included among the

training data, was used to determine the accuracy

of each classifier. Accuracy was determined by

comparing the output of the classifier to the known

correct output and dividing the quantity of correct

classifications by the total number of test samples.

The results from each fold’s test set were

combined and used to determine an overall

accuracy for the classifier. For detection

classifiers, the two possible outputs consisted of

“faulty” and “non-faulty”. Thus, the detection

classifiers functioned as binary classifiers. For the

fault classification classifiers, there were three

possible outputs representing the wear types:

“flank”, “chisel”, and “outer corner”. The models

were also trained for an alternate classification

method in which a specific type of wear served as

the detection target. In that case, the known

classifications consisted of two classes, for

instance, flank-wear and non-flank-wear. The

process described here was applied separately to

the penetration data and the steady-state data in

order to train and test detection and classification

models for both conditions independently.

VI. RESULTS AND DISCUSSION

By plotting detection and classification accuracies

against the number of principal components

retained, it is possible to observe stabilizing levels

of accuracy as the number of retained principal

components increases. The results from

penetration and steady-state data are given as

follows.

A. Penetration stage data
As seen in the penetration stage data in Figures 1

and 3, the kNN classifier achieved a stable

accuracy of 77% for fault detection and 73% for

classification. The decision tree produced similar

results for fault detection, reaching a stable

accuracy of 75%. However, it performed worse for

classification, reaching approximately 50%

accuracy. Results for the ANN classifier were less

consistent. For detection, typical accuracies fell

between 70% and 83%. For classification, typical

accuracies ranged from 51% to 73%. SVM and

Naive Bayes achieved 75% and 65% detection

accuracies, respectively, while for classification,

they reached 87% and 71% accuracy, respectively.

The classifiers detected flank wear with accuracies

between 62% and 82%. The accuracy of the kNN

classifier stabilized between 80% and 82% while

the decision tree consistently reached accuracies

between 62% and 71%. The ANN’s classification

accuracies were less consistent, falling between

63% and 78%. SVM and Naive Bayes detected

flank wear with 82% and 76% accuracy,

respectively.

Accuracies of chisel wear detection between 60%

and 93% were achieved by the penetration data

classifiers. The accuracy of kNN stabilized

Figure 2: Fault detection accuracy based on steady-state data

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
cc

u
ra

cy
 %

Number of features

DT

ANN

BAYES

KNN

SVM

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
cc

u
ra

cy
 %

Number of features

DT

ANN

BAYES

KNN

SVM

Figure 1: Fault detection accuracy based on penetration data

between 80% and 82% and that of the decision

tree stabilized between 64% and 67%. Accuracy of

the ANN classifier spanned a wider range, from

55% to 77%. SVM and Naive Bayes detected

chisel wear with 91% and 93% accuracy,

respectively.

The classifiers were able to detect outer corner

wear with accuracies ranging from 60% to 96%.

Stable accuracies of 91% and 71% were reached

by kNN and decision tree respectively. The

accuracy of ANN varied from as low as 60% to as

high as 83%. SVM and Naive Bayes detected

outer corner wear with 96% and 71% accuracy,

respectively.

B. Steady-state stage data
As seen in the steady-state stage data in Figures 2

and 4, kNN reached a stable detection accuracy of

78% and a stable classification accuracy of 84%.

The decision tree classifier demonstrated

inconsistent detection performance, with

accuracies ranging from 52% to 75%. It reached a

stable classification accuracy of 53%. The

detection accuracies of the ANN classifier fell

between 55% and 82% while its classification

accuracies ranged from 62% to 84%. SVM and

Naive Bayes reached detection accuracies of 80%

and 75%, respectively, and classification

accuracies of 93% and 73%, respectively.

For detecting flank wear, accuracies between 75%

and 93% were reached. kNN achieved a stable

accuracy of 93%, while the decision tree classifier

reached a stable accuracy of 76%. ANN returned

relatively stable accuracies of 81% to 90%

accuracy. SVM and Naive Bayes detected flank

wear with 87% and 80% accuracy, respectively.

Chisel wear was detected with accuracies ranging

from 60% to 91%. kNN reached a stable accuracy

of 87%. Decision tree reached a stable accuracy of

Figure 3: Fault classification accuracy based on penetration data

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
cc

u
ra

cy
 %

Number of features

DT

ANN

BAYES

KNN

SVM

Figure 4: Fault classification accuracy based on steady-state data

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
cc

u
ra

cy
 %

Number of features

DT

ANN

BAYES

KNN

SVM

73% and the accuracy of ANN fell between 60%

and 82%. SVM and Naive Bayes detected chisel

wear with 91% and 73% accuracy, respectively.

Detection of outer corner wear reached accuracies

between 62% and 100%. The output accuracy of

kNN stabilized at 93%. The accuracies of decision

tree fell between 62% and 67%. Those of ANN

ranged from 65% to 85%. SVM and Naive Bayes

detected outer corner wear with 100% and 80%

accuracy, respectively.

Detection accuracies were generally higher than

classification accuracies, which was expected

since the models functioned as binary classifiers

for detection and multi-class classifiers for

classification.

Detection accuracy was generally higher for

penetration data than for steady-state data.

However, the classifiers exhibited higher

classification accuracy based off of steady-state

data than for penetration data. The greater noise

present in the raw penetration data may have

obfuscated the data enough to reduce classification

accuracy. By reducing noise further by optimizing

the data preprocessing, it may be possible to

achieve higher classification accuracy.

It is evident from the results that SVM and kNN

generally achieved the highest accuracies. Both

classifiers achieved high, stable accuracies for

fault detection, fault classification, and individual

detection of flank wear, chisel wear, and outer

corner wear. The strong performance aligns with

kNN’s strength in classifying nonlinear,

multimodal data.

Possible explanations for the poor performance of

the decision tree are excessive sensitivity to

changes in the training data, and the fact that each

leaf of the decision tree represents a singular,

constant output, thereby resulting in

discontinuities among leaves [2].

The poor performance of the ANN is most likely

due to overfitting. The trained ANN was able to

classify training data without error, but could not

do so for testing data. A means to prevent

overfitting is to provide more training samples.

Doubling the number of training samples could be

accomplished by splitting each sample of 8-second

duration into two samples of 4-seconds each.

It is evident from Figures 5 and 6 that the method

of training classifiers with a reduced set of highly

fault-correlated features, as described in section

III-C, increases the classification accuracy at low

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21

A
cc

u
ra

cy
 %

Number of features

Figure 5: kNN fault classification accuracy

comparison between the full set of features

(red) and the reduced set of correlated features

(blue). Results based upon steady-state data.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21

A
cc

u
ra

cy
 %

Number of features

Figure 6: SVM fault classification accuracy

comparison between the full set of features

(red) and the reduced set of correlated features

(blue). Results based upon steady-state data.

numbers of retained features for kNN and SVM

classifiers. Similar improvement was observed

when the reduced sets were used to detect specific

wear types.

VII. CONCLUSIONS

With varying degrees of success, five

classification methods were used to detect and

classify faults from vibrational drilling data. SVM

and kNN classifiers performed with the highest

accuracy and are thus recommended for

application in drill bit fault monitoring systems.

SVM and kNN were able to achieve stable

detection accuracies of 75% and 78%,

respectively, and stable classification accuracies of

93% and 84%, respectively. The other classifiers

tested, decision tree, ANN, and Bayes classifier,

did not reach the same levels of accuracy.

Results from this work demonstrate that classifiers

are generally able to classify faults more

accurately based on steady-state data than

penetration data. Likewise, the classifers’

detection of individual wear types was generally

more accurate when based on steady-state data.

Further work could be performed to integrate the

aforementioned five classifiers into ensemble

classification methods, whereby considering the

output of multiple classifiers could yield even

higher detection and classification accuracies.

Additionally, improved ANN performance could

be attained by re-training the classifier with a

greater number of training samples.

Promising results were obtained by using a

reduced set of highly correlated features to train

kNN and SVM classifiers. Further work would

also involve expanding this approach to the other

classification methods.

REFERENCES

[1] Abu-Mahfouz, I. “Drilling wear detection and

classification using vibration signals and artificial

neural network”. International Journal of Machine

Tools & Manufacture, vol. 43, pp. 707-720, 2003.

[2] Bishop, C.M. Pattern Recognition and

Machine Learning. New York: Springer, 2006.

[3] Dimla, D.E. "Sensor signals for tool-wear

monitoring in metal cutting operations—a review

of methods." International Journal of Machine

Tools and Manufacture, vol. 40, no. 8, pp no.

1073-1098, 2000.

[4] “Feedforwardnet”. Mathworks, The

Mathworks Inc., 2018,

https://www.mathworks.com/help/deeplearning/ref

/feedforwardnet.html

[5] Hagan, M.T., Demuth, H.B., Beale, M.H., and

De Jesus, O. Neural Network Design - 2nd

Edition. Martin Hagan, 2014.

[6] Hastie, T., Tibshirani, R. and Friedman, J."The

Elements of Staistical Learning". Springer, 2009,

https://www.mathstat.dal.ca/~aarms2014/StatLear

n/docs/05_annotated.pdf

[7] He, Q.P. and Wang, J. “Fault Detection Using

the k-Nearest Neighbor Rule for Semiconductor

Manufacturing Processes”. IEEE Transactions on

Semiconductor Manufacturing vol. 20, no. 4, pp.

345-354, 2007.

 [8] “Improve shallow neural network

generalization and avoid overfitting”. Mathworks,

The Mathworks Inc., 2018

[9] “Improving classification trees and regression

trees”. Mathworks, The Mathworks Inc., 2018,

https://www.mathworks.com/help/stats/improving-

classification-trees-and-regression-trees.html

[10] Kumar, A., Ramkumar, J., Verma, N.K., and

Dixit, S. Detection and Classification for Faults in

Drilling Process using Vibration Analysis.

International Conference on Prognostics and

Health Management, Cheney, WA, USA, 22-25

June 2014. IEEE.

https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html
https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html
https://www.mathstat.dal.ca/~aarms2014/StatLearn/docs/05_annotated.pdf
https://www.mathstat.dal.ca/~aarms2014/StatLearn/docs/05_annotated.pdf
https://www.mathworks.com/help/stats/improving-classification-trees-and-regression-trees.html
https://www.mathworks.com/help/stats/improving-classification-trees-and-regression-trees.html

